7.2 Breathing and Respiration

In this section, you will:

- **Explain** the mechanics of breathing
- **Explain** how gases are exchanged between the human respiratory system and the external environment
- **Perform** an experiment to examine factors that affect the rate of respiration

The Mechanics of Breathing

Inhalation

- External ribs muscles and diaphragm contract
- Rib cage expands up and out and the floor of the chest cavity downward
- Volume in the thoracic cavity increases, pressure decreases
- Air pressure in the lungs becomes less than external environment
- Air moves from high to low pressure and rushes in

Exhalation

- External ribs muscles and diaphragm relax
- Rib cage relaxes down and in and the floor of the chest cavity upward
- Volume in the thoracic cavity decreases, pressure increases
- Air pressure in the lungs becomes more than external environment
- Air moves from high to low pressure and rushes out
Respiratory Volume - Spirograph

- Measures the amount of air that moves into the lungs with each breath. Each of the following are considered:
 - Tidal Volume
 - Inspiratory reserve
 - Expiratory reserve
 - Vital Capacity
 - Residual Volume

Continued...

- **Tidal Volume** – volume of air normally inhaled or exhaled
- **Inspiratory reserve** – additional volume of air that can be taken in beyond tidal volume
- **Expiratory reserve** – additional volume of air that can be expelled beyond tidal volume
- **Vital Capacity** – total lung capacity including reserve space
- **Residual Volume** – amount of gas that remains in the system even after exhalation – never leaves the respiratory system or lungs would collapse

A Typical Spirograph

[Diagram showing a spiograph with volume and time axes]

External vs. Internal Respiration

External respiration (A) occurs between alveoli and the capillaries next to them. As blood moves away from the body tissues, it is oxygen-poor and carbon dioxide-rich. As it moves through the lung capillaries, oxygen from the air in the alveoli diffuses into the capillaries and carbon dioxide diffuses out of the blood.

Internal respiration (B) occurs between the capillaries and the body tissues. Oxygen diffuses from the blood into the oxygen-poor tissues while carbon dioxide diffuses from the tissues into the blood.
Homework:

• Lab next class - Rate of Respiration
• Section 7.2 – Review
• Pg. 254 # 2,3,4a,5,7,9